Collections:
Other Resources:
List of Day Count Conventions
Where can I find a list of commonly used day count conventions?
✍: FYIcenter.com
Here is a list of commonly used Day Count Conventions
and their rules to calculate DiR(), and DiY() functions
as defined in previous tutorials.
30/360 (30U/360, 30US/360, 30/360 US, 30/360SIA) - Mainly used by US agency/corporate bonds.
Day_Count_Factor(Y1,M1,D1,Y2,M2,D2)
= DiR(Y1,M1,D1,Y2,M2,D2) / DiY(Y1,M1,D1,Y2,M2,D2)
DiR(Y1, M1, D1, Y2, M2, D2) = 360×(Y2-Y1) + 30×(M2-M1) + (D2-D1)
where D1 and D2 are adjusted sequentially as below:
If T1 is End of Month, set D1 = 30,
If T2 is End of Month and D1 = 30, set D2 = 30,
DiY(Y1, M1, D1, Y2, M2, D2) = 360
30/360 US (NASD)
Day_Count_Factor(Y1,M1,D1,Y2,M2,D2)
= DiR(Y1,M1,D1,Y2,M2,D2) / DiY(Y1,M1,D1,Y2,M2,D2)
DiR(Y1, M1, D1, Y2, M2, D2) = 360×(Y2-Y1) + 30×(M2-M1) + (D2-D1)
where D1 and D2 are adjusted sequentially as below:
D1 = min(D1,30),
If D2 = 31,
If D1 < 30, set T2 = T2 + 1 day
Otherwise, set D2 = 30
DiY(Y1, M1, D1, Y2, M2, D2) = 360
30A/360 (30/360 Bond, 30/360 ISDA) - Mainly used by US municipal bonds.
Day_Count_Factor(Y1,M1,D1,Y2,M2,D2)
= DiR(Y1,M1,D1,Y2,M2,D2) / DiY(Y1,M1,D1,Y2,M2,D2)
DiR(Y1, M1, D1, Y2, M2, D2) = 360×(Y2-Y1) + 30×(M2-M1) + (D2-D1)
where D1 and D2 are adjusted sequentially as below:
D1 = min(D1,30),
If D1 = 30, set D2 = min(D2,30).
DiY(Y1, M1, D1, Y2, M2, D2) = 360
30E/360 (30S/360, 30/360 European, 30/360 ICMA, 30/360 ISMA)
Day_Count_Factor(Y1,M1,D1,Y2,M2,D2)
= DiR(Y1,M1,D1,Y2,M2,D2) / DiY(Y1,M1,D1,Y2,M2,D2)
DiR(Y1, M1, D1, Y2, M2, D2) = 360×(Y2-Y1) + 30×(M2-M1) + (D2-D1)
where D1 and D2 are adjusted sequentially as below:
D1 = min(D1,30),
D2 = min(D2,30).
DiY(Y1, M1, D1, Y2, M2, D2) = 360
30E/360 ISDA (30/360 German)
Day_Count_Factor(Y1,M1,D1,Y2,M2,D2)
= DiR(Y1,M1,D1,Y2,M2,D2) / DiY(Y1,M1,D1,Y2,M2,D2)
DiR(Y1, M1, D1, Y2, M2, D2) = 360×(Y2-Y1) + 30×(M2-M1) + (D2-D1)
where D1 and D2 are adjusted sequentially as below:
If T1 is End of Month, set D1 = 30,
If T2 is End of Month,
unless it's End of February and the Maturity Date, set D2 = 30.
DiY(Y1, M1, D1, Y2, M2, D2) = 360
30E+/360 Not widely used.
Day_Count_Factor(Y1,M1,D1,Y2,M2,D2)
= DiR(Y1,M1,D1,Y2,M2,D2) / DiY(Y1,M1,D1,Y2,M2,D2)
DiR(Y1, M1, D1, Y2, M2, D2) = 360×(Y2-Y1) + 30×(M2-M1) + (D2-D1)
where D1 and D2 are adjusted sequentially as below:
D1 = min(D1,30),
If D2 = 31, set T2 = T2 + 1 day,
DiY(Y1, M1, D1, Y2, M2, D2) = 360
30IT/360 US
Day_Count_Factor(Y1,M1,D1,Y2,M2,D2)
= DiR(Y1,M1,D1,Y2,M2,D2) / DiY(Y1,M1,D1,Y2,M2,D2)
DiR(Y1, M1, D1, Y2, M2, D2) = 360×(Y2-Y1) + 30×(M2-M1) + (D2-D1)
where D1 and D2 are adjusted sequentially as below:
If M1 = 2 and D1 > 27, set D1 = 30,
DiY(Y1, M1, D1, Y2, M2, D2) = 360
30/365
Day_Count_Factor(Y1,M1,D1,Y2,M2,D2) = DiR(Y1,M1,D1,Y2,M2,D2) / DiY(Y1,M1,D1,Y2,M2,D2) DiR(Y1, M1, D1, Y2, M2, D2) = 360×(Y2-Y1) + 30×(M2-M1) + (D2-D1) DiY(Y1, M1, D1, Y2, M2, D2) = 360
Act/360 - This convention follows the concept of a year has 12 months with 30 days in each month. DiY() is fixed to 360, 5 to 6 days less than days in a calendar year. So you are getting 5 to 6 days extra interest in a calendar year.
Day_Count_Factor(T1,T2) = DiR(T1,T2) / DiY(T1,T2) DiR(T1,T2) = Calendar_Days(T1,T2) DiY(T1,T2) = 360
Act/364 - This convention follows the concept of a year has 52 weeks with 7 days in each week. DiY() is fixed to 364, pretty close to 365/365 days in a calendar year.
Day_Count_Factor(T1,T2) = DiR(T1,T2) / DiY(T1,T2) DiR(T1,T2) = Calendar_Days(T1,T2) DiY(T1,T2) = 364
Act/365 (Act/365F, Act/365 Fixed) - Mainly used by banks in US for their savings and CD (Certificate Deposit) accounts. This convention fixes FiY() to 365, so it is easier to calculate. It is very accurate for regular years, and less accurate for leap years.
Day_Count_Factor(T1,T2) = DiR(T1,T2) / DiY(T1,T2) DiR(T1,T2) = Calendar_Days(T1,T2) DiY(T1,T2) = 360
Act/365A
Day_Count_Factor(T1,T2) = DiR(T1,T2) / DiY(T1,T2) DiR(T1,T2) = Calendar_Days(T1,T2) DiY(T1,T2) = 366, if a leap day is in [T1,T2) 365, otherwise
Act/365CA - Mainly used by Canadian bonds.
Day_Count_Factor(T1,T2) = DiR(T1,T2) / DiY(T1,T2) DiR(T1,T2) = Calendar_Days(T1,T2) DiY(T1,T2) = 366, if a leap day is in [T1,T2) 365, otherwise
Act/365L
Day_Count_Factor(T1,T2) = DiR(T1,T2) / DiY(T1,T2) DiR(T1,T2) = Calendar_Days(T1,T2) DiY(T1,T2) = 366, if Frequency=1 and the accrual range has a leap day 366, else if Frequency>1 and (Y2,M2,D2) is in the leap year 365, otherwise
Act/Act (Act/Act ISDA) - This convention tries to follow the calendar accurately.
Days_in_Regular_Year Days_in_Leap_Year
Day_Count_Factor(T1,T2) = -------------------- + -----------------
365 366
Or:
Day_Count_Factor(T1,T2) = DiR(T1,T2) / DiY(T1,T2)
DiR(T1,T2) = 366×Days_in_Regular_Year + 365×Days_in_Leap_Year
DiY(T1,T2) = 365×366
Act/Act AFB (Act/Act Euro)
Day_Count_Factor(T1,T2) = Full_Years + Partial_Year_Factor Full_Years are counted backward Partial_Year_Factor = Days_in_Partial_Range/Days_in_Year Days_in_Partial_Range = Calendar days in the partial range Days_in_Year = 366, if a leap day is in the partial range 365, otherwise
Act/Act Bond (Act/Act ICMA, Act/Act ISMA) - Mainly used by US treasury bonds. This convention ensures that every accrual period generates the same amount of interest. And every day generates the same amount of interest in the same accrual period.
Day_Count_Factor(T1,T2) = DiR(T1,T2) / DiY(T1,T2) DiR(T1,T2) = Calendar_Days(T1,T2) DiY(T1,T2) = Accrual_Frequency × Calendar_Days(T1,T3)
Bus/252BR (Act/252, ActW/252, BD/252, BU/252) - Mainly used in Brazil.
Day_Count_Factor(T1,T2) = DiR(T1,T2) / DiY(T1,T2) DiR(T1,T2) = # of business days in the range in Brazilian calendar DiY(T1,T2) = 252
NL/365
Day_Count_Factor(T1,T2) = DiR(T1,T2) / DiY(T1,T2) DiR(T1,T2) = Calendar_Days(T1,T2) - Leap_Days DiY(Y1, M1, D1, Y2, M2, D2) = 365
Related abbreviations
References:
⇒ Terms Used in Day Count Conventions
2026-02-02, ∼127🔥, 0💬
Popular Posts:
What is the performance of the NASDAQ Composite (Nasdaq GIDS: ^IXIC) index? The performance of the N...
What are Historical Values of the US Unadjusted MoM (Month over Month) Inflation Rates? Here are His...
If you are buying or selling a US Treasury Bill, you can use this online converter to calculate the ...
What is the performance of the NASDAQ Composite (Nasdaq GIDS: ^IXIC) index? The performance of the N...
What is the performance of the Dow Jones Industrial Average (DJI: ^DJI) index? The performance of th...